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The problem of nonasymptotic stability of the zero solution of certain systems
of differential equations with a small parameter at derivatives is considered,
Conditions are derived for which the stability of zero solution of the degenera-
te (with respect to the small parameter) system entails also the stability of ze-
ro solution of the input system, The problem of stability of stabilization by gy-
roscopic systems with considerablé intrinsic angular momenta is used as an ex-
ample,

1, Let the motion of some system be defined by the differential equations
(L1
dszfdt = ZK‘ (t1 Py 25, xi) (k = i’ sy m)

dx, "
Tzzpkj(l")xj'{'xk(t’”’zj‘ 7)) (k=1,....8)
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=
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where # is a small parameter; p;; (1) are continuous functions of ¥ and Zg

and X are functions holomorphic over the set of variables z; and = (=1,...,
m; i =1, .+ ™ yhose expansions do not contain terms of power lower than the

second, whose coefficients are continuous bounded functions of ¢ and @ and

Z}a(i’p,!zj;{}}ze (k"—“—‘ i,...,m}* Xyg{i,}&,z;;,(}}S{} {k=1,..‘,ﬂ)

We assume that the above properties apply in a certain region, l
The zero solution of system (1. 1) is stable (nonasymptotically) by Liapunov's theo-
rem, provided that all roots of the equation
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n

have negative real parts, i.e., if Eq.(1,2) satisfies Hurwitz conditions,
The degenerate system for Egs.(1. 1) is of the form

(1.3)

dzp [dt = Z (£, 0,25, ) (k=1,..., m)

n
dejdt = 3\ ppixj+ X (6,0, 2;7) (k=1,...,8)
f=t

n
0= 2 pijj—|-Xk(t,0,zj«,:vi) k=E+1,...,n)
i=1

pkj = pkj (l‘l' = 0)

The characteristic equation of the first approximation system (1,3) has m zero roots,

and the remaining & of its roots are determined by the equation
(1. 4)

.....

Let us investigate the conditions under which the stability of the zero solution of the
degenerate system(1, 3) implies the stability of zero solution of the input system (1, 1),
The case of asymptotic stability in a similar problem was considered in [2-4], The fol-
lowing theorem is valid,

Theorem, If all roots of the characteristic equation of the degenerate system
(1.3), except the m zero roots, have negative real parts and the equations

1.5
18,0 — Pyl |5+ 1 (2.9
..... r =0
"ij !
n
r41 (1. 6)
[l ijﬁ — Py; I .= 0
n

satisfy Hurwitz conditions, and among the roots of Eq, (1,5) there are no multiple ro-
ots, the zero solution of the degenerate system (1, 3) is stable, and for fairly small para-
meters, K the zero solution of system (1, 1) is, also, stable,
System (1,3) admits m independent holomorphic Liapunov integrals
st Pr Gy I e - a T ) =4 (k=1,...,m) (.7
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where Px is a function that is holomorphic over the set of variables %/ 15 -+ 4 %
whose expansion does not contain terms of order lower than the second, which vanishes
when #;=0,2,=20,..., z = 0 and whose coefficients are bounded functions of
t. )
Proof. Letus consider the degenerate system (1,3). By the theorem on implicit
functions the system of (n — &)  algebraic equations

n (L.8)
0= 3 pym;+ X, (1.0, 55 8) = zp®) B=E+1....0)
=1
admits the unique solution
Ty == Tg (t;zjl Tyy » v s xg) (-“’*‘E'i“ 1,. ’n) (1'9)

in the form of holomorphic functions of variables T1r ¥y -+ 2 Tz which vanish wh-
en #=0,2,=0,...,7,=0 whose coefficients are continuous bounded fun-
ctions of time and critical variables zi  if the Jacobian }dfy/ d2jlg jopsr... .=
is nonzero when #i=0(=1,...,n). For system (1, 8) that Jacobian is equal | Py

[e+1 and under conditions of the theorem it is nonzero,
Substituting solution (1, 9) into the first (m -+ E) equations of system (1,3) we obtain
for the latter
(1.10)

Owing to the method of forming functions Z:’ and Xy vanish when =0, ...

7, = 0. System (1, 10) belongs to the kind of Liapunov's system [1], Using Liap-
unov's theorem we obtain that under conditions considered here its zero solution is sta-
ble, and that integrals of the form (1. 7) exist,

Let us consider Eq. (1, 2), and show that under conditions of the theorem the roots of
that equation separate for p —» 0  into & roots which tend to the values of roots of
Eq.(1.4) and at the limit are equal to them, while the remaining (rn ~ £) roots tend
to oo. The (r—E)  roots of the second group can be represented in the form & ()

= o (i) /B, where o (u) - o, when p— 0 (2 is the root of Eq.(1,5)); the re-
maining (r —r) roots are of the form A (u) = f (n)/uz  where B (1) » Bo when
p-> 0 (B, isthe root of Eq,(1.6)).

We multiply Eq.(1.2) by p" and introduce in it the new variablesp = 1/ A. In the
obtained equation 4 (p, n) =0 the roots p == p (&)} are continuous functions of pa~
rameter * when | Py (0) 1?5 0. By the theorem on the roots of an algebraic equa-
tion we find that when p ~ 0 E roots p  tend to the values of roots of the de-
generate equation @ (0, 0) = 0 and the remaining tend to zero, Reverting to the varia-
ble . we obtain the first part of the statement formulated above,

We multiply Eq, (1.2) by u® and setit ph = a. We write the obtained equa-
tion dy (&, B} =0 in the form
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(1.11)
dy (@, p) = F (@) + pFy (@, u) =0
£
Fa)=d® ”Gma-——pml] r
I—pyl |2
n

We introduce the notation Ae = o — @,, where © is the root of Eq.(1,11) and
&y is the nonzero solution of equation F {a) = 0, 1.e,the root of Eq, (1.5),

By expanding (1, 11) in series in the neighborhood of O we obtain an equation wh~
ich for 4F (o) / dos=0 and small ¥+ determines by the theorem on implicit
functions the unique holomorphic function A2 = Aa (4) and vanishes when B = 0.
Hence for fairly small K the related roots @ (M) are close to ®a and, when W — 0
o (p) — &g

We multiply Eq.(1.2) by p™% andset p2 =, The theorem on the con-
tinuous dependence of roots of algebraic equations on their coefficients implies that
(n — 1) roots of the obtained equations da (B, u) =10 P ()~ fo when p - 0.
The second part of the statement is proved,

Thus, when Egs, {1,4)~(1, 6} satisfy the Hurwitz conditions, the real parts of all roots
of Eq. (1.2) are negative when parameter p  is fairly small. The zero solution of sys-
tem (1. 1) is then Liapunov stable, The theorem is proved,

2, As an example of the theorem application, we shall consider the problem of
stability of the established motion of a system of gyroscopic stabilization, We have Lia-
punov's critical case,

For the model of a system of gyroscopic stabilization considered in [5, 6] the differen=-
tial equations of perturbed motion are (in the notation of those papers) of the form

(2. 1)
P .
G gt T2 G+ =0,/ 4-Q) (k=1,...,n)
j=1 i=lL
niu 5 nda
A Log: 4 B oo+ R oo
dt ki?; ¥ 9+ 50 = Q) + Qy
j=n41 j=m+1 F=nf1
{(k=n-+1,...,n4u)
dgp /dt =¢q;' (k=1,...n)

The first r equations correspond to generalized mechanical coordinates, the fol-
lowing u» equations correspond to generalized electrical coordinates; ¢;" (j = n + 1,
<« nt 4 are mesh currents

Q=0 (k=1,...,m;n-{-p.;..j,””n,i_u)’
b 2
Q= X 4 (k=m+1,...,9

j=n-t1
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n
Q' =— D id; k=s+1,...,n),
j=s+1
4
Q== @yt (b=ntl . n)
ji=1
ntu
Q' =— D) % (k=n-l4+1,.. . ,n4p
j=n31
Q" are holomorphic functions over the set of variables ¢, @' (i=1,..., n),
g (=n-+1,..., n+ u) whose expansions do not contain terms of lower than sec-
ond order, All Qr" vanishwhen ¢ =0(=1,...,n+u), a=00G=1,
IL,s+1,...,n) and arbitrary /41, - - -» 95+ The zero subscript denotes zero ord-

er terms in expansions of related functions,

We shall solve the stability problem of system (2, 1) zero solution with respect to all
variables ¢j(=1,...,n+ ¥ and g (i=1,..., n) We consider
systems in which gri = gri*H where H is a large positive dimensionless pa-
rameter, We denote 5 = 1/ p where, asin Sect,1, M is a small parameter, and
reduce system (2, 1) to the form (1, 1), For this we pass to time © = p? and carry
out the transformation

n (2.2
Y dqj ° *2 E=1 m)
j=1 i=1
n-tu
dy; .
———Zam dT] —_:L_,,,IL), x, = Z Lk],q]. (h-_—n-}—i,...,n-{»u)
= =
Zppurk = I (k=1,..0 ZTnumk™= 9 (k=s+1, )
When |gk, fehte im0 the transformation (2. 2) is nonsingular and unifor-

mly regular [7], The determinant p of that transformation is nonzero for any arbit-
rarily small ®

j=l41,.
D=|Ly;laii lag 100+ ¢ g; ;=i i

System (2, 1) in new variables assumes the form

dzg | dv =2 (k=1,..., m) (2.3)
dx,, =
L =—2(p'bkj,+gkj,)xj+xk’+Xk” (k=1,....n)
n-4-u
” dv Z—Z”Bkix - Z& Ry + X+ X7 (k=n+41,. .. niup
j=n+1

de:i ; E=ntu+l,. .. ,2n+u—m)

j=1
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where X' (k=1,...,n+ u)  are functions Qx’ in new variables, bxi » &ki’s Bxi’
and Bki' are elements of transformed matrices, and  Zj (2, 7;,t) and
Xy" (zj, z;, p)  are holomorphic functions over the set of variables zj, z; (f = 1,
caomyi=1,...,2n4 u—m whose expansions do not contain terms of ord-

er lower than the second, and which vanish for 2 = 0. System (2, 3) is of the type
of system (1, 1), We obtain the degenerate system by setting in Egs, (2.3) p = 0.
The system

n aq, _ (2.4)

Zlgkjo_ﬁ—=Qk'+Qk (k=1,....n)

i=1

n+u

RPef=Q + Q" (k=n+1,....n+uw

j=n+1

where Q4" is the set of nonlinear terms, corresponds to it in old variables, Only tho-~
se of the nonlinear terms of input equations (2, 1) which are caused by gyroscopic for-
ces and forces of generalized mechanical velocities remain in system (2, 4).

System (2, 4) differs from the systems of precessional equations considered in gyro-
scopy [8] by the absence of dissipation terms which relate to generalized mechanical
velocities,

Applying to system (2,3) the results obtained in Sect, 1, reverting to old variables,
and taking into account that the roots of the characteristic equation are invariant with
respect to the nonsingular linear transformation, we obtain that when all roots, except
the m zero roots, of the system characteristic equation in the first approximation
for (2,4), i.e, all roots of equation

1 (2.9)
l gkjo [ 0
............................................... m
I g°M || —A4.°0 |
................................................ S o
I &x; 7v+6k] ll 0 :
e T n
............. [+] O
i f R+l L

have negative real parts, and for | g’ M F 0 e equations
ILgh+ B2+ @200 =0
nt-u

1
v | 2.7)
( akj"ﬁ + gl =0 (

n

satisfy the Hurwitz conditions, then the zero solution of system (2. 4) is stable, and for
fairly small p the zero solution of system (2, 1) is also stable, Let us show that in
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such case it is sufficient if the equation

. (2.8)

=0

n

i akjok + bkjo + gkjo |

satisfies Hurwitz's conditions,

In fact, Eq.(2.7) corresponds to Eq,(1, 6) in Sect, 1 which is obtained as a degen~
erate one from the equation (when pu = 0)

1
I 6};_7‘5 - p'zpkj a1

I éij—' Dy (W1

n

If all roots of Eq,(1, 6) are imaginary, we consider instead of (1. 6) the shortened
equation d, (B, p) = 0, which is obtained from d, (B, p) = 0, by taking into
account in each element of the determinant only terms which contain p  in powers
not greater than the first

18 —vpgl |
dy(ﬁ'p)=ﬂz .................................. r =ﬁid3(5,u) =0
| 6]5;,'5 — Py W)

When p-—>0 the (»—r) roots of equation 95 (B,p) =10  tendto Bo
and at the limit are equal to it,
Let us estimate the error in the approximate determination of roots of equation d,
B,u) =0 by the roots of the degenerate and shortened equations (roots of equa-
tions (1,6) and ds (§, u) = 0 ), It can be shown that when among the roots of Eq,
(1. 6) there are no multiples, then for fairly small M the corresponding roots of equa-~

tions d2 (B, p) =10 and dy B,p) =0 (the (n—r)  roots that tend to
B, when p— 0 ) lie in the root plane on one side of the imaginary axis, He~

nce, when equation 4z (B, p) =0 satisfies the Hurwitz conditions, then for fa-

irly small y the related (n — 1 roots of equation ds (8, #) = 0 have

negative real parts,
Thus, when all roots of Eq, (1.6) are imaginary it is, generally, sufficient to stip~
ulate the fulfilment of Hurwitz conditions by equations (1,4), (1.5), and d. (B, ) =
0.
In the notation used in system (2, 1) Eq, (2, 8) corresponds to the equation
ds (B, 1) = 0 Hence for the considered systems of gyroscopic stabilization the follow-

ing statement is valid: let ,
L83 1™ = 00 1 g i s 0
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If Eq, (2, 5) satisfies Hurwitz conditions, i,e, the zero solution of system (2, 4) is stable
in the first approximation, and Egs.(2, 6) and (2, 8) also satisfy those conditions, and the
roots of Eqgs,(2,6) and (2,7) are simple, then for fairly small parameter p (fairly lar-
ge values of parameter H) the zero solution of system (2, 1) is stable with respect to
all generalized velodtiesand generalized mechanical coordinates,
System (2,4) admits 7 holomorphic Liapunov integrals

[n
2 gkj"qj—Q—(pk(ql,...,(]n)ka (k=1,...,m)

=1 i
where (ij is a holomorphic function that does not contain terms of order lower than

the second and vanishes for % =0@=1,.. .. Ls+ 1, ...,n) and arbitrary
/TOTINI
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