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The probiem of nonasymptotic stability of the zero solution of certain systems 
of differential equations with a small parameter at derivatives is considered. 
Conditions are derived for which the stability of zero solution of the degenera- 

te (with respect to the small parameter) system entails also the stability of ze- 
ro solution oi the input system, The problem of stability of stabilization by gy- 
roscopic systems with considerable intrinsic angular momenta is used as an ex- 

ample. 

5, Let the motion of some system be defined by the differen~al equations 

(1*1) 

where P is a small parameter; p&j (n) are continuous functions of n; and Z, 

and Xs are functions halomorphic over the set of variables zj and 9 (i i= 1, . . ., 
n; i 5% 2, . . *, n) whose expansions do not contain terms of power lower than the 

second, whose coefficients are continuous bounded functions of t and p and 

We assume that the above properties apply in a certain region, 
The zero solution of system (1.1) is stable (nonasymptotically) by Liipunov’s theO- 

rem, provided that all roots of the equation 
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A (h) = n i8ijh ’ iki (hi! i 
(1.2) 

; = 0 

. . . . . . . . r 

Il P28kj,ja - Pkj (PI II ! 
n 

have negative real parts, i. e., if Eq.( 1.2) satisfies Hurwitz conditions. 
The degenerate system for Eqs. (1.1) is of the form 

dZk / dt = Zk (t, 0, zj, xi) (k = 1, . . -, m) 

dX~dt = ~ PkjXj + Xk (t, 0, Zjj Xi) @=I,...,<) 
j=l 

(1.3) 

O= ~Pkjxj+Xk(t,O,zjjxi) (k=E+1,...,n) 
j=l 

Pkj = Pkj (p = ‘1 

The characteristic equation of the first approximation system (1.3) has m zero roots, 

and the remaining $ of its roots are determined by the equation 

(1.4) 

II ‘MA - Pkj ll ? 

4 =o 
‘h&ii : 

78 

Let us investigate the conditions under which the stability of the zero solution of the 

degenerate system(l.3) implies the stability of zero solution of the input system (1.1). 
The case of asymptotic stability in a similar problem was considered in [2-41. The fol- 

lowing theorem is valid. 
Theorem. If all roots of the characteristic equation of the degenerate system 

(1.3), except the rn zero roots, have negative real parts and the equations 

(1.5) 

(1.6) 

satisfy Hurwitz conditions, and among the roots of Eq. (1.5) there are no multiple ro- 

ots, the zero solution of the degenerate system (1.3) is stable, and for fairly small para- 
meters. Cc the zero solution of system (1.1) is, also, stable. 

System (1.3) admits m independent holomorphic Liapunov integrals 

%I( + ‘pk (ZIP . . -, hp %- - . ( 2tp t, = Al, @ = I, . . ., ml (1.7) 
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where qk is a function that is holomorphic over the set of variables zj~ 217 . * -2 3~ 
whose expansion does not contain terms of order lower than the second, which vanishes 
when x~=O,x~=O,...,x,=O 

‘1 and whose coefficients are bounded functions of 
t. 

Proof. Let us consider the degenerate system (1.3). By the theorem on implicit 
functions the system of (n - 4) algebraic equations 

admits the unique solution 

5, = x, (t, q, q, * * *t zE;) (s = 4 + 1, . . ., n) (1. Q> 

in the form of holomorphic functions of variables 9, x2, . * *, “< which vanish wh- 
en Zi=0,X2=:0,...,ZE=0 whose coefficients are continuous bounded fun- 
ctions of time and critical variables ZG if the Jacobian \ dfk. / dq lK..+t+r. . ., it 
isnonzerowhen ri=O(i=i,...,n). For system (1.8) that Jacobian is equal 1 pkj 

7% 
]c+i and under conditions of the theorem it is nonzero. 

Substituting solution (1.9) into the first (m i- E;) equations of system (1.3) we obtain 
for the latter 

(1.10) 

dzi; i dt = Zk.’ (t, zj, 9, * * ‘, Q (k = 1, . . .( m) 

dX, 
F 

-x-= c pkj’xj + X,’ (t. zj, Xl. . . . 1 xc) (it= 1,. . . , E) 

j=l 

Owing to the method of forming functions 2:~’ and Xg’ vanish when % = 0, . . * 
xg = 0. System (1.10) belongs to the kind of Liapunov’s system [l]. Using Liap- 

unov’s theorem we obtain that under conditions considered here its zero solution is sta- 
ble, and that integrals of the form (I, 7) exist. 

Let us consider Eq. (1.2), and show that under conditions of the theorem the roots of 
that equation separate for p -P 0 into & roots which tend to the values of roots of 

Eq.(1.4) and at the limit are equal to them, while the remaining (n - 4) roots tend 

to co. The (1. - 5) roots of the second group can be represented in the form h (Ff 
= a @i/k& where 01 (P) -+ a, when P-j0 (a, is the root of Eq. (1.5)); the re- 

maining (n - r) roots are of the form h (~1 = P (p) f u2 where @ (P) -+ &I when 

p -+ 0 (& is the root of Eq.(l. 6)). 
We multiply Eq.(l. 2) by p” and introduce in it the new variables p = 1 / h. In the 

obtained equation d (p, u) = 0 the roots p = P fit) are continuous functions of pa- 

rameter I* when 1 Pk+ (P) ]“I + 0. By the theorem on the roots of an algebraic equa- 

tion we find that when t-L-+6< roots P tend to the values of roots of the de- 

generate equation d (o, 0) = 0 and the remaining tend to zero. Reverting to the varia- 

ble h. we obtain the first part of the statement formulated above. 

We multiply Eq. (1.2) by pE and set it pk = a. We write the obtained equa- 

tion dI (a, P) = 0 in the form 
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(1.11) 

F (a) = aE 
II f$ju -Pkj% : 

._._................. r 
II-PP,jII f 

n 

We introduce the notation Aa = cc - OG~, where Q is the root of Eq.(l. 11) and 

au is the nonzero solution of equation F (cc) = 0, i. e, the root of Eqst (1,5)+ 

my expanding (1.11) in series in the neighborhood of C&o* we obtain an equation wh- 

ich for dF (a+) / da J: 0 and small P+ determines by the theorem on implicit 

functions the unique holomorphic function Aa = Aha, (P) and vanishes when Ir = 0. 

Hence for fairly small Cc the related roots a 1~) are close to % and, when P -4 0 

Q (P) ---, a,* 
We multiply E&(1.2) by pr+t and set psh = /3. The theorem on the con- 

tinuous dependence of roots of algebraic equations on their coefficients implies that 

(R. - r) roots of the obtained equations da (B, cl) = 0 fi (CC) -+ 80 when in. --s 0. 

The second part of the statement is proved, 
Thus, when Eqs. (1.4)~(I. 6) satisfy the Hurwitz conditions, the real parts of all roots 

of Eq, (1.2) are negative when parameter p is fairly small. The zero solution of sys- 
tem (1.1) is then Liapunov stable. The theorem is proved. 

2. As an example of the theorem application, we shall consider the problem of 
stability of the established motion of a system of gyroscopic stabilization, We have LIa- 
punov’s critical case, 

For the model of a system of gyroscopic stabilization considered in [5,6] the differen- 
tial equations of perturbed motion are (in the notation of those papers) of the form 

(2.1) 
n n 

(k=n+i,...,nfu) 

dqk/dt=qk’ (k= 1,. , .,n) 

The first n equations correspond to generalized mechanical coordinates, the fol- 
lowing u equations correspond to generalized electrical coordinates; qj’ (j = n -I- ‘f, 
. . ., Iz + uy are mesh currents 
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Qk'=_ f: 
j=s+l 

‘kjqj tk=s+l,...,n), 

Qkf=-x Ok;qi (k=7~+1,...,~+~) 

j=l 
n+u 

Qk'=-- z Qkyqj’ (k=n+Z+l,...,n+~) 
j=n+l 

Qr” are holomorphic functions over the set of variables Pi, qi’ (i = 1, . . .( n) 

qj’ (j = n + 1, . . ., n + U) whose expansions do not contain terms of lower man &c- 
ond order. All Or’ vanishwhen qj’=O(j=i,...,n.+u), qi=OO~=*,***, 

I, s+ 1, . . .) 72) and arbitrary Qrtr, . . ., Qs- The zero subscript denotes zero ord- 
er terms in expansions of related functions. 

We shall solve the stability problem of system (2.1) zero solution with respect to all 
variables q,j(j= 1,. . ., n+ u) and 9i (i = 1, . . ., n). We consider 
systems in which gki = gkj*H where H is a large positive dimensionless pa- 
rameter. We denote H = 1 / p where, as in Sect. 1, P is a small parameter, and 
reduce system (2.1) to the form (1.1). For this we pass to time ‘G = pt and carry 
out the transformation 

(2.2) 
n 

2 k = p2 c dq. n 
1 I &pbk;+g;;)qj (k=l,...,na) 

ski dr 
i=l j=l 

7% n+u 

c dqj 
Xk = akjdz 

(k=l,...,rL), xk= 
c 

Lkjyj’ (k = n + I,..., n+U) 

i=l j==n+1 

xn+u+k 
= qk (k = 1, . . ., I), xnt,L_m+k = ‘?k tk = s +- ‘7 - . ‘7 n, 

When I ggg Ijk’_“:,‘! : ‘.:‘G i 0 the transformation (2.2) is nonsingular and unifor- 
mly regular [7]. The determinant D of that transformation is nonzero for any arbit- 
rarily small P 

System (2.1) in new variables assumes the form 

dZl, / d,c = i?I, (k = 1, . . ., m) (2.3) 

dx, 
7% 

--- 
p2 dt - c 

(Ilbkj’+gkj’)xi+Xk’+Xkll (‘=I,. .n) 

j=l 

dxk n 
n+u 

px==- 
c 

pL-lrkjfx3 - 
c 

Rki’xj+ Xk’$ X,” (k= n + 1,. . , n-fu)+ 

j=l j=n+l 

dx, n 
-= 

at c 
dkixj (k=n+u+1,...,2n+u-m) 

j=l 
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where Xk’ (k = 1, . . ., n + u) are functions Qk’ in new variables, hj’v grit Bki’ 

and HG’ are elements of transformed matrices, and zk (zj, 9, IL) and 
xkx h, xi, p) are holomorphic functions over the set of variables zi, pi (i = 1, 

. . ., m; i = 1, . . ., 2n + u - m) whose expansions do not contain terms of ord- 
er lower than the second, and which vanish for 9 = 0. System (2.3) is of the type 

of system (1.1). We obtain the degenerate system by setting in Eqs. (2.3) P = 0. 
The system 

n 

E 
&Jj 

gki’dt 
=Qk’+nk” (k= i,...vn) 

j=l 

(2.4) 

n+u 

c Rkjoqi’ = Qk’ + Qk” (k = n + 1, . . . , n + u) 

j=n+1 

where qk” is the set of nonlinear terms, corresponds to it in old variables. Only tho- 

se of the nonlinear terms of input equations (2.1) which are caused by gyroscopic for- 
ces and forces of generalized mechanical velocities remain in system (2.4). 

System (2.4) differs from the systems of precessional equations considered in gyro- 
scopy [S] by the absence of dissipation terms which relate to generalized mechanical 

velocities. 
Applying to system (2.3) the results obtained in Sect. 1, reverting to old variables, 

and taking into account that the roots of the characteristic equation are invariant with 

respect to the nonsingular linear transformation, we obtain that when all roots, except 

the m zero roots, of the system characteristic equation in the first approximation 

for (2.4), i. e. all roots of equation 

llg,i”ll ; ’ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

11 g&j”’ 11 t IkA,jOII 
. . . . . . . . . . . . . .._..._...... . . . . . . . . . . . . . . . . ...*. 

II gkjoh f ‘kj II I 0 
_..............*........+.................... 
IIOkjq i i 

. . . . . . . . . . . . . . . . 
0 : 

0 !ll Rkj”+Qkjoll 

1 

m 

s 
. =o 

n 

n+u 

(2.5) 

have negative real parts, and for 1 gtj” I”1 =k o the equations 

n-t1 (2.6) 
lILkjl\++k~+S2kj011 i =O 

n+u 
1 
i = 0 

(2.7) 

n 

satisfy the Hurwitz conditions, then the zero solution of system (2.4) is stable, and for 
fairly small P the zero solution of system (2.1) is also stable. Let us show that in 
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such case it is sufficient if the equation 

(2.89 

satisfies Hurwitz’s conditions. 

In fact, E&(2.7) corresponds to Eq.(l. 6) in Sect. 1 which is obtained as a degen- 
erate one from the equation (when p = 0) 

1 
II 6kjB - PP*j (PI II ; 
. . . . _ _. __. . . . . . . . . . . . . . . . . . . . . . . . . 4 

4 (IX P) = ll.~kjB - wki (PI II * 0 : = 
. . . . . . . . . . . . . . . .._.........-..-.. F 

11 “kjp - Pkj (cl) 11 : 
n 

If all roots of Eg.(l. 6) are imaginary, we consider instead of (1.6) the shortened 
equation dv is, lb) = 0, which is obtained from d, (@, p) = 0, by taking into 
account in each element of the determinant only terms which contain p in powers 
not greater than the first 

When Y-+0 the (n - F) roots of equation d3 (BY P) = 0 tend to & 
and at the limit are equal to it. 

Let us estimate the error in the approximate determination of roots of equation d, 

@tcl) = 0 by the roots of the degenerate and shortened equations (roots of equa- 

tions (1.6) and ds (B, p) =. 0 ). It can be shown that when among the roots of Eq. 

(1.6) there are no multiples, then for fairly small P the corresponding roots of equa- 

tions dz (Pt 1’ ) = 0 and 4 (fi, P) = 0 (the (n - r) roots that tend to 

8, when p -+ 0 ) lie in the root plane on one side of the imaginary axis. He- 

nce, when equation da (g, u) = 6 satisfies the Hurwitz conditions, then for fa- 

irly small p the related (n - F’ roots of equation d2 (67 IL) = O have 

negative real parts, 
Thus, when all roots of Eq. (1.6) are imaginary it is, generally, sufficient to stip- 

ulate the fulfilment of Hurwitz conditions by equations (1.4), (1.5), and dr #J, P) = 

0. 

In the notation used in system (2.1) Eq. (2.8) corresponds to the equation 
ds (p, p) = 6 Hence for the considered systems of gyroscopic stabilization the follow- 

ing statement is valid: let 
I gkj? fl"#O, / gri"I{~~'~::;;ls # 0 
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If Eq, (2.5) satisfies Hurwitz conditions, i.e. the zero solution of system (2.4) is stable 
in the first approximation, and Eqs.(Z. 6) and (2.8) also satisfy those conditions, and the 
roots of Eqs.(2.6) and (2.7) are simple, then for fairly small parameter Ir (fairly lar- 
ge values of parameter H) the zero solution of system (2.1) is stable with respect to 
all general&d velodtiesand generaIized mechanical coordinates. 

System (2.4) admits m holomorphic Liapunov integrals 

5 g,joqi 3 (Pk (Ql, . . I (l,i = c, (I$ = 1, . . , , nL) 

where Qk% a holomorphic function that does nor contain terms of order lower than 
fhesecondand vanishesfor ~i=O(i=4,***,t,s+f, . . *, a) and arbitrary 

Q&i, * . .?QS. 
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